Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 46, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630415

RESUMO

Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.


Assuntos
Prunus persica , Solanum lycopersicum , Prunus persica/genética , Frutas/genética , Filogenia , Saccharomyces cerevisiae , Solanum lycopersicum/genética , Fatores de Transcrição/genética
2.
BMC Public Health ; 24(1): 1097, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643079

RESUMO

BACKGROUND: To analyse the association among the simultaneous effects of dietary intake, daily life behavioural factors, and frailty outcomes in older Chinese women, we predicted the probability of maintaining physical robustness under a combination of different variables. METHODS: The Fried frailty criterion was used to determine the three groups of "frailty", "pre-frailty", and "robust", and a national epidemiological survey was performed. The three-classification decision tree model was fitted, and the comprehensive performance of the model was evaluated to predict the probability of occurrence of different outcomes. RESULTS: Among the 1,044 participants, 15.9% were frailty and 50.29% were pre-frailty; the overall prevalence first increased and then decreased with age, reaching a peak at 70-74 years of age. Through univariate analysis, filtering, and embedded screening, eight significant variables were identified: staple food, spices, exercise (frequency, intensity, and time), work frequency, self-feeling, and family emotions. In the three-classification decision tree, the values of each evaluation index of Model 3 were relatively average; the accuracy, recall, specificity, precision, and F1 score range were between 75% and 84%, and the AUC was also greater than 0.800, indicating excellent performance and the best interpretability of the results. Model 3 takes exercise time as the root node and contains 6 variables and 10 types, suggesting the impact of the comprehensive effect of these variables on robust and non-robust populations (the predicted probability range is 6.67-93.33%). CONCLUSION: The combined effect of these factors (no exercise or less than 0.5 h of exercise per day, occasional exercise, exercise at low intensity, feeling more tired at work, and eating too many staple foods (> 450 g per day) are more detrimental to maintaining robustness.


Assuntos
Fragilidade , Humanos , Feminino , Idoso , Fragilidade/diagnóstico , Idoso Fragilizado , Dieta , Exercício Físico , Estilo de Vida
3.
China CDC Wkly ; 6(9): 162-167, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495590

RESUMO

What is already known about this topic?: Previous studies have predominantly examined the micro-level aspects of women aging inflection points, while macro-level research using big data on the inflection points of aging among middle-aged and elderly women in China is currently limited. What is added by this report?: This study determined the inflection ages for physiological, psychological, social, and total dimensions in middle-aged, young elderly, and elderly women [(48.0-53.2) vs. (66.3-70.0) vs. (78.4-81.2) years old]. What are the implications for public health practice?: This study is important for gaining a deeper understanding of aging, identifying patterns of aging, and implementing targeted interventions to promote the overall health of Chinese women.

4.
Int Immunopharmacol ; 127: 111383, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38118315

RESUMO

Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Defensinas/uso terapêutico , Defensinas/farmacologia
5.
Eur J Med Chem ; 255: 115417, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137246

RESUMO

Inflammation is one of a major feature of Parkinson's disease (PD) which poses a threat to people's health in the world. It has been reported that antioxidation and anti-inflammation have significant effects on the treatment of PD. 1,2,4-oxadiazole and flavone derivatives have remarkable antioxidant and anti-inflammatory activities. In order to find highly effective drugs for PD treatment, based on the remarkable anti-inflammatory and antioxidant activities of the 1,2,4-oxadiazole pharmacophore and the flavonoid pharmacophore, we designed and synthesized a novel series of 3-methyl-8-(3-methyl-1,2,4-oxadiazol-5-yl)-2-phenyl-4H-chromen-4-one derivatives by pharmacophore combination, and evaluated their anti-inflammatory and antioxidation activities for PD treatment. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against reactive oxygen species (ROS) and NO release in LPS-induced BV2 Microglia cells, and the optimal compound Flo8 exhibited the most potent anti-inflammatory and antioxidant activities. Both in vivo and in vitro results showed that Flo8 inhibited neuronal apoptosis by inhibiting inflammatory and apoptotic signaling pathways. In vivo studies also showed that the compound Flo8 ameliorated motor and behavioral deficits and increased serum dopamine levels in MPTP-induced PD model mice. Taken together, this study demonstrated the compound Flo8 could be a promising agent for the treatment of PD.


Assuntos
Flavonas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Antioxidantes/farmacologia , Oxidiazóis/farmacologia , Oxidiazóis/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Relação Estrutura-Atividade , Flavonas/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Microglia
6.
BMC Geriatr ; 23(1): 340, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259039

RESUMO

BACKGROUND: This study systematically reviewed injury death and causes in the elderly population in China from 2000 to 2020, to prevent or reduce the occurrence of injuries and death. METHODS: The CNKI, VIP, Wan Fang, MEDLINE, Embase, SinoMed, and Web of Science databases were searched to collect epidemiological characteristics of injury death among elderly over 60 years old in China from January 2000 to December 2020. Random effects meta-analysis was performed to pool injury mortality rate and identify publication bias, with study quality assessed using the AHRQ risk of bias tool. RESULTS: (1) A total of 41 studies with 187 488 subjects were included, covering 125 million elderly. The pooled injury mortality rate was 135.58/105 [95%CI: (113.36 to 162.14)/105], ranking second in the total death cause of the elderly. (2)Subgroup analysis showed that male injury death (146.00/105) was significantly higher than that of females (127.90/105), and overall injury mortality increased exponentially with age (R2 = 0.957), especially in those over 80 years old; the spatial distribution shows that the injury death rate in the central region is higher than that in the east and west and that in the countryside is higher than that in the city; the distribution of death time shows that after entering an aging society (2000-2020) is significantly higher than before (1990-2000). (3) There are more than 12 types of injury death, and the top three are falling, traffic accidents, and suicide. CONCLUSIONS: China's elderly injury death rate is at a high level in the world, with more males than females, especially after the age of 80. There are regional differences. The main types of injury death are falling, traffic, and suicide. During the 14th Five-Year Plan period, for accidental injuries and death, a rectification list for aging and barrier-free environments was issued. PROSPERO REGISTRATION: The systematic review was registered in PROSPERO under protocol number CRD42022359992.


Assuntos
Acidentes por Quedas , Acidentes de Trânsito , Big Data , População do Leste Asiático , Suicídio Consumado , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Acidentes de Trânsito/mortalidade , China/epidemiologia , Prevalência , Acidentes por Quedas/mortalidade
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047773

RESUMO

Controlling the tree size of fruit species such as peach can reduce the amount of labor and input needed for orchard management. The phytohormone gibberellin (GA) positively regulates tree size by inducing degradation of the GA signaling repressor DELLA. The N-terminal DELLA domain in this protein is critical for its GA-dependent interaction with the GA receptor GID1 and the resulting degradation of the DELLA protein, which allows for growth-promoting GA signaling. In this study, a DELLA family member, PpeDGYLA, contains a DELLA domain but has amino acid changes in three conserved motifs (DELLA into DGYLA, LEQLE into LERLE, and TVHYNP into AVLYNP). In the absence or presence of GA3, the PpeDGYLA protein did not interact with PpeGID1c and was stable in 35S-PpeDGYLA peach transgenic callus. The overexpression of PpeDGYLA in both polar and Arabidopsis showed an extremely dwarfed phenotype, and these transgenic plants were insensitive to GA3 treatment. PpeDGYLA could interact with PpeARF6-1 and -2, supposed growth-promoting factors. It is suggested that the changes in the DELLA domain of PpeDGYLA may, to some extent, account for the severe dwarf phenotype of poplar and Arabidopsis transgenic plants. In addition, our study showed that the DELLA family contained three clades (DELLA-like, DELLA, and DGLLA). PpeDGYLA clustered into the DGLLA clade and was expressed in all of the analyzed tissues. These results lay the foundation for the further study of the repression of tree size by PpeDGYLA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nanismo , Prunus persica , Arabidopsis/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Sci ; 330: 111630, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787849

RESUMO

Peach [Prunus persica (L.) Batsch] annual shoots grow up quickly, which limits the lighting and ventilation of an orchard. Atypical bHLH proteins IBH1(INCREASED LEAF INCLINATION1 BINDING bHLH1) play substantial roles in regulating cell elongation and plant stature. In this study, three PpIBH1s (PpIBH1-1/-2/-3) were identified in peach genome and contain a conserved AS domain and a characteristic HLH domain. The transcript levels of three PpIBH1s positively correlated with internode length, which gradually increased from apex to base along the peach shoots. This positive correlation was further confirmed in apple and poplar shoots. And the PpIBH1s gene were highly expressed in the shoot tips collected from twelve dwarf peach cultivars (gid1c mutants). In tissue-specific expression analysis, PpIBH1-1 are more highly expressed in tissues at the growth-arrested stage than cell-elongating. Transgenic Arabidopsis lines showed that different plant heights depending on the dose of PpIBH1-1 transcripts. And the dwarfing PpIBH1-1 transgenic lines were caused by the shorted cell length. PpIBH1-1 interacted with two bHLH factors (PpACE2 and PpLP1). These results suggested that PpIBH1-1 probably prevents internode elongation of peach shoots in a dose-dependent manner. Our work provided a foundation for properly controlling the growth of annual peach branches.


Assuntos
Arabidopsis , Prunus persica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/metabolismo
9.
Langmuir ; 39(9): 3411-3419, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802648

RESUMO

In the field of energy-containing materials, the modification of nanoaluminum powders has been widely studied. However, in modified experimental design, the lack of theoretical prediction usually leads to long experimental cycles and high resource consumption. To this end, this study evaluated the process and effect of dopamine (PDA)- and polytetrafluoroethylene (PTFE)-modified nanoaluminum powders based on molecular dynamics (MD). Through the calculation of the coating stability, compatibility, and oxygen barrier performance of the modified material, the modification process and effect were explored from a microscopic point of view. The results showed that the adsorption of PDA on the nanoaluminum was the most stable, and the binding energy was 463.03 kcal·mol-1. PDA and PTFE with different ratios are compatible systems at 350 K, and the best compatibility ratio is 10 wt % PTFE/90 wt % PDA. The 90 wt % PTFE/10 wt % PDA bilayer model has the best barrier performance for oxygen molecules in a wide temperature range. The calculated results of the coating stability agree with the experiments, and it is pointed out that it is feasible to evaluate the modification effect in advance by MD simulation. In addition, the simulation results concluded that the double-layered PDA and PTFE have better oxygen barrier properties. Compatibility can be used only to determine whether phase separation occurs between mixtures and is not directly related to the dense mixing of polymers and the barrier properties of small gas molecules. The simulation provided in this article can predict the experimental results and provide theoretical guidance for coating modification experiments in order to reduce unnecessary experiments, shorten the experimental cycle, and reduce costs.

10.
Hortic Res ; 10(1): uhac224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643759

RESUMO

Branch number is an important agronomic trait in peach (Prunus persica) trees because plant architecture affects fruit yield and quality. Although breeders can select varieties with different tree architecture, the biological mechanisms underlying architecture remain largely unclear. In this study, a pillar peach ('Zhaoshouhong') and a standard peach ('Okubo') were compared. 'Zhaoshouhong' was found to have significantly fewer secondary branches than 'Okubo'. Treatment with the synthetic strigolactone (SL) GR24 decreased branch number. Transcriptome analysis indicated that PpTCP18 (a homologous gene of Arabidopsis thaliana BRC1) expression was negatively correlated with strigolactone synthesis gene expression, indicating that PpTCP18 may play an important role in peach branching. Yeast one-hybrid, electrophoretic mobility shift, dual-luciferase assays and PpTCP18-knockdown in peach leaf buds indicated that PpTCP18 could increase expression of PpLBO1, PpMAX1, and PpMAX4. Furthermore, transgenic Arabidopsis plants overexpressing PpTCP18 clearly exhibited reduced primary rosette-leaf branches. Moreover, lncRNA sequencing and transient expression analysis revealed that lncRNA5 targeted PpTCP18, significantly increasing PpTCP18 expression. These results provide insights into the mRNA and lncRNA network in the peach SL signaling pathway and indicate that PpTCP18, a transcription factor downstream of SL signaling, is involved in positive feedback regulation of SL biosynthesis. This role of PpTCP18 may represent a novel mechanism in peach branching regulation. Our study improves current understanding of the mechanisms underlying peach branching and provides theoretical support for genetic improvement of peach tree architecture.

11.
Comput Math Methods Med ; 2022: 7300788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479313

RESUMO

Hepatocellular carcinoma (LIHC) is the fifth common cancer worldwide, and it requires effective diagnosis and treatment to prevent aggressive metastasis. The purpose of this study was to construct a machine learning-based diagnostic model for the diagnosis of liver cancer. Using weighted correlation network analysis (WGCNA), univariate analysis, and Lasso-Cox regression analysis, protein-protein interactions network analysis is used to construct gene networks from transcriptome data of hepatocellular carcinoma patients and find hub genes for machine learning. The five models, including gradient boosting, random forest, support vector machine, logistic regression, and integrated learning, were to identify a multigene prediction model of patients. Immunological assessment, TP53 gene mutation and promoter methylation level analysis, and KEGG pathway analysis were performed on these groups. Potential drug molecular targets for the corresponding hepatocellular carcinomas were obtained by molecular docking for analysis, resulting in the screening of 2 modules that may be relevant to the survival of hepatocellular carcinoma patients, and the construction of 5 diagnostic models and multiple interaction networks. The modes of action of drug-molecule interactions that may be effective against hepatocellular carcinoma core genes CCNA2, CCNB1, and CDK1 were investigated. This study is expected to provide research ideas for early diagnosis of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Simulação de Acoplamento Molecular , Aprendizado de Máquina
12.
Medicine (Baltimore) ; 101(44): e31498, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36343078

RESUMO

BACKGROUND: Through meta-analysis of the relationship between glomerular filtration rate and major adverse cardiovascular events (MACE) after percutaneous coronary intervention (PCI), we studied the impact of glomerular filtration rate on the prognosis of PCI. METHODS: We collected literature on the incidence of MACE in patients with chronic kidney disease (CKD; estimated glomerular filtration rate < 60 mL/minute/1.73 m2) and patients with nonchronic kidney disease undergoing PCI. The search period was from January 1, 2000, to November 1, 2021. The searched databases included CNKI, Chinese Wanfang Data, China Biology Medicine disc, Web of Science, PubMed, and Cochrane Library. We used subgroup analysis and meta-regression to assess heterogeneity. RESULTS: Twenty-one eligible studies were included, with 46,255 samples included, 4903 cases of MACE (10.6%), and patients with CKD had a higher risk of MACE after PCI (Risk ratios = 1.67; 95% confidence interval: 1.51-1.85). Multivariate meta regression results show that heterogeneity is related to region. The risk of MACEs in patients with CKD is different in different regions, and North America has the lowest risk, with an risk ratios value of 1.21 (95% confidence interval: 1.08-1.35). CONCLUSION: Chronic kidney disease will increase the probability of MACE in patients with myocardial infarction after PCI and affect the prognosis of PCI. Therefore, clinical attention should be given to assessing glomerular filtration rate effects while treating patients with myocardial infarction with the PCI procedure.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Insuficiência Renal Crônica , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Infarto do Miocárdio/etiologia , América do Norte , Resultado do Tratamento , Fatores de Risco
13.
BMC Genomics ; 23(1): 730, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307759

RESUMO

BACKGROUND: The rapid growth of annual shoots is detrimental to peach production. While gibberellin (GA) promotes the rapid growth of peach shoots, there is limited information on the identity and expression profiles of GA-metabolism genes for this species. RESULTS: All six GA biosynthetic gene families were identified in the peach genome, and the expression profiles of these family members were determined in peach shoots. The upstream biosynthetic gene families have only one or two members (1 CPS, 2 KSs, and 1 KO), while the downstream gene families have multiple members (7 KAOs, 6 GA20oxs, and 5 GA3oxs). Between the two KS genes, PpKS1 showed a relatively high transcript level in shoots, while PpKS2 was undetectable. Among the seven KAO genes, PpKAO2 was highly expressed in shoots, while PpKAO1 and - 6 were weakly expressed. For the six GA20ox genes, both PpGA20ox1 and - 2 were expressed in shoots, but PpGA20ox1 levels were higher than PpGA20ox2. For the five GA3ox genes, only PpGA3ox1 was highly expressed in shoots. Among these biosynthesis genes, PpGA20ox1 and PpGA3ox1 showed a gradual decrease in transcript level along shoots from top to bottom, and a similar trend was observed in bioactive GA1 and GA4 distribution. Among the GA-deactivation genes, PpGA2ox6 was highly expressed in peach shoots. PpGA2ox1 and - 5 transcripts were relatively lower and showed a similar pattern to PpGA20ox1 and PpGA3ox1 in peach shoots. Overexpression of PpGA20ox1, - 2, or PpGA2ox6 in Arabidopsis or tobacco promoted or depressed the plant growth, respectively, while PpGA3ox1 did not affect plant height. Transient expression of PpGA20ox1 in peach leaves significantly increased bioactive GA1 content. CONCLUSIONS: Our results suggest that PpGA20ox and PpGA2ox expression are closely associated with the distribution of active GA1 and GA4 in peach annual shoots. Our research lays a foundation for future studies into ways to effectively repress the rapid growth of peach shoot.


Assuntos
Arabidopsis , Prunus persica , Giberelinas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética
14.
Plant Sci ; 323: 111409, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934255

RESUMO

Rapid growth of branches in a peach tree restricts the light penetration and air ventilation within the orchard, which lowers fruit quality and promotes the occurrence of diseases and insects. Our previous works showed that PpDELLA1 and PpDELLA2 repress the rapid growth of annual shoots. Proteins that interact with DELLA are vital for its function. In this study, seven PpPIFs (PpPIF1, -2, -3, -4, -6, -7 and -8) were identified in the peach genome and contain a conserved bHLH domain. Among the seven PpPIFs, PpPIF8 interacted with PpDELLA2 through an unknown motif in the C-terminal and/or the bHLH domain. Overexpression of PpPIF8 in Arabidopsis promotes plant height and branch numbers. Hypocotyl elongation was significantly enhanced by PpPIF8 under weak light intensity. PpPIF8 overexpressed in Arabidopsis and transiently expressed in peach seedlings upregulated the transcription of YUCCA and SAUR19 and downregulated SHY1 and -2. Additionally, PpPIF4 and -8 were significantly induced by weak light. Phylogentic analysis and intron patterns of the bHLH domain strongly suggested that PIFs from six species could be divided into two groups of different evolutionary origins. These results lay a foundation for the further study of the repression of shoot growth by PpDELLA2 through protein interaction with PpPIF8 in peach.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Ácidos Indolacéticos/metabolismo , Luz
15.
J Plant Physiol ; 275: 153741, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690029

RESUMO

The growth of grapevine [Vitis vinifera L.] is commonly limited by drought stress. The mechanisms by which grapevine copes with drought stress have not yet been extensively clarified. In this study, the drought and abscisic acid (ABA)-induced gene VvWRKY18 was demonstrated to decreased drought tolerance of Arabidopsis thaliana overexpression (VvWRKY18-OE) lines. Compared to wild-type plants, VvWRKY18-OE lines showed increased levels of malonaldehyde (MDA) and the reactive oxygen species (ROS) H2O2 and O2- decreased levels of proline, weakened activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and decreased sensitivity to ABA with respect to stomatal closure.VvWRKY18-OE lines also showed an increase in stomatal density and a higher water loss rate. Negative regulators of stomatal development including SDD1, YDA, TMM, and MPK6, were downregulated in VvWRKY18-OE lines. Transcript levels of the stress-related genes DREB1A and CBF2 were significantly reduced in VvWRKY18-OE lines under drought stress. Taken together, these findings demonstrate that VvWRKY18 reduced drought tolerance in Arabidopsis. Our results contribute to understanding of the roles that WRKY genes play in drought stress and stomatal development.


Assuntos
Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
16.
Plant Mol Biol ; 109(1-2): 147-157, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362935

RESUMO

KEY MESSAGE: Peach encodes 14 INDETERMINATE DOMAIN (IDD) transcription factors. PpIDD4, -12 and -13 mediated PpDELLA1 binding to the PpGA20ox1 promoter. Each of these three PpIDD-DELLA1 complexes activated transcription of PpGA20ox1. PpTPR1 and -4 interrupted the interaction of PpIDDs with PpDELLA1. The plant growth regulator gibberellin (GA) plays an important role in the rapid growth of annual shoots in peach. Our previous study showed that the peach cultivar 'FenHuaShouXingTao' (FHSXT), a gibberellic acid receptor (gid1) mutant, accumulates active GAs in annual shoot tips. This mutant enhances GA feedback regulation in peach. The results of this study suggested that the PpIDD-DELLA1 complex is the underlying mechanism of GA feedback regulation in peach. Fourteen IDD genes were identified in peach, and three PpIDDs (PpIDD4, -12 and -13, all from group IV) interacted with PpDELLA1, an important component in GA signaling pathway. Truncation, segmentation and site mutation of the promoter of PpGA20ox1 (a GA biosynthesis gene) showed that all three PpIDD proteins recognized the core motif TTGTC. PpIDD4 and -13 mainly bind to site 3, while PpIDD12 binds to site 5 of the PpGA20ox1 promoter. All three PpIDD-DELLA1 complexes activated the PpGA20ox1 promoter-LUC fusion. These data suggested that PpIDDs bridge PpDELLA1 and the promoter of PpGA20ox1, which then activated the transcription of PpGA20ox1. In addition, PpTPR1 and -4 disrupted the interaction of PpIDDs with PpDELLA1. Our research will be helpful for understanding and possibly modifying the regulation of annual shoot growth and GA biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Prunus persica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retroalimentação , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo
17.
Plant Biotechnol J ; 20(5): 886-902, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34919780

RESUMO

Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.


Assuntos
Aquaporinas , Prunus persica , Aquaporinas/genética , Cromossomos , Flores/genética , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Prunus persica/genética , Temperatura
18.
Front Plant Sci ; 12: 619158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679834

RESUMO

Peach (Prunus persica L. Batsch) trees grow vigorously and are subject to intense pruning during orchard cultivation. Reducing the levels of endogenous gibberellins (GAs) represents an effective method for controlling branch growth. Gibberellin 2-oxidases (GA2oxs) deactivate bioactive GAs, but little is known about the GA2ox gene family in peach. In this study, we identified seven PpGA2ox genes in the peach genome, which were clustered into three subgroups: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Overexpressing representative genes from the three subgroups, PpGA2ox-1, PpGA2ox-5, and PpGA2ox-2, in tobacco resulted in dwarf plants with shorter stems and smaller leaves than the wild type. An analysis of the GA metabolic profiles of the transgenic plants showed that PpGA2ox-5 (a member of subgroup C19-GA2ox-II) is simultaneously active against both C19-GAs and C20-GAs,which implied that C19-GA2ox-II enzymes represent intermediates of C19-GA2oxs and C20-GA2oxs. Exogenous GA3 treatment of shoot tips activated the expression of all seven PpGA2ox genes, with different response times: the C 19-GA2ox genes were transcriptionally activated more rapidly than the C20-GA2ox genes. GA metabolic profile analysis suggested that C20-GA2ox depletes GA levels more broadly than C19-GA2ox. These results suggest that the PpGA2ox gene family is responsible for fine-tuning endogenous GA levels in peach. Our findings provide a theoretical basis for appropriately controlling the vigorous growth of peach trees.

19.
PeerJ ; 9: e10961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763299

RESUMO

BACKGROUND: Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). METHODS: DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. RESULTS: Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar 'Zhongyoutao 14'. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2-3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.

20.
Plant Cell Rep ; 39(5): 621-634, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32107612

RESUMO

KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.


Assuntos
Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Vitis/genética , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Secas , Endopeptidases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...